WJEC Chemistry AS-level

2.6: Halogenoalkanes

Practice Questions

England Specification

effort to 'turn the tide' against binge drinking.	
State one effect on the human body and one effect on society of the excessive use of alcoholic drinks.	
	[2]
Effect on the human body	
Effect on society	
(b) Butan-1-ol can be prepared by warming 1-chlorobutane with aqueous sodium hydroxide	
(i) Classify the type of reaction occurring and give the mechanism for the reaction	
	[4]
Reaction type	
Mechanism	

1. (a) In March 2012 the UK Government proposed a minimum price of 40p per unit of alcohol in an

(c) Butan-1-ol has the molecular formula $C_4H_{10}O$. Two other isomers of $C_4H_{10}O$ are butan-2-ol and methylpropan-1-ol. $CH_3-CH_2-CH-CH_3$ OH butan-2-ol	[2]
Two other isomers of $C_4H_{10}O$ are butan-2-ol and methylpropan-1-ol. $CH_3-\!$	
Two other isomers of $C_4H_{10}O$ are butan-2-ol and methylpropan-1-ol. $CH_3-\!$	
Two other isomers of $C_4H_{10}O$ are butan-2-ol and methylpropan-1-ol. $CH_3-\!$	
CH_3 — CH_2 — CH — CH_3 OH	
(i) Draw the skeletal formula of methylpropan-1-ol.	
	[1]
(ii) Name the type of isomerism shown by these isomers.	
	[1]
(iii) Butan-1-ol can be oxidised by acidified potassium dichromate(VI) to form butanoic acid. State what you would observe during this reaction.	
	[1]

v) Butan-1-ol can also be dehydrated. Name a suitable dehydrating agent and write an equation fair reaction.		
[2]		
Dehydrating agent		
Equation		
(d) 1-Chlorobutane is an example of a halogenoalkane. One group of halogenoalkanes (CFCs) has been shown to play a role in ozone depletion. Most of these ozone-depleting substances contain chlorine. Halogenoalkanes containing only fluorine do not harm the ozone layer.		
Due to the Montreal Protocol of 1987, CFCs have been largely banned and have been replaced in many applications by HFCs, which contain fluorine as the only halogen.		
(i) Explain why CFCs deplete the ozone layer, but HFCs do not.		
[2]		
(ii) Suggest a reason why there is still concern about ozone depletion.		
[1]		
(Total 16)		

- 2. (a) 1-bromopropane can be used to prepare propanoic acid in a two-stage process shown below.

 OH

 Reagent A

 H

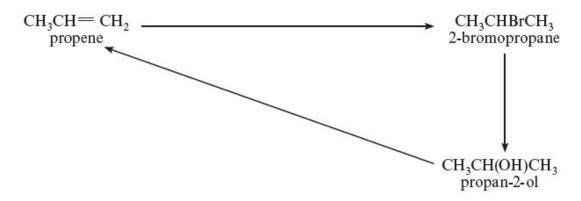
 (i) Classify the reaction occurring in the first stage of this process.
- (ii) The first stage uses aqueous sodium hydroxide. Under alternative conditions, 1-bromopropane produces a different product when it reacts with sodium hydroxide.

Give the alternative conditions required, and the product that would be formed from 1-bromopropane under these conditions.

- (iii) For the second stage, state the **full name** of reagent **A** and classify the reaction occurring.
- (iv) Reagent **A** can also be used to produce propanal from propan-1-ol. State how you would isolate propanal from this reaction

[1]

[2]


[2]

For e	(b) (i) 1-bromopropane can also be used to prepare butanoic acid in a different two-stage process. For each of these two stages, give reagents and conditions required, and draw the displayed formula (showing all bonds) of the intermediate.			
		נ	3]	
			_	
			_	
			_	
			_	
			_	
			_	
prepa	red fro	acid is used to prepare esters used in the flavouring and perfume industries. It may be om 1-bromopropane in a two-stage process as in (b) (i) above or from butan-1-ol or one-stage process.		
		p factors that a scientist would consider in choosing between these different routes to anoic acid on a bulk scale.		
			2]	
			_ _ _	
(c)		pound ${\bf B}$ is an isomer of formula $C_4H_8O_2$ which exists as a sweet-smelling liquid at temperature.		
	(i)	Elemental analysis of compound B shows that it has a composition of 54.5 % carbon, 9.1 % hydrogen and 36.4 % oxygen, by mass. Show that this composition is consistent with the formula above.		

 A triplet at 1.0 ppm with an area of 3 A singlet at 2.1 ppm with an area of 3 A quartet at 4.0 ppm with an area of 2 	
The infrared spectrum of compound B shows absorptions at 2981 cm ⁻¹ and 1750 cm ⁻¹ .	
These are the only significant absorptions above 1500 cm ⁻¹ .	
Using all the information supplied, deduce the structure of compound B .	
Give reasons in support of your answer.	
	[5] QWC [2]
	(Total 20)

(ii) Compound **B** shows three resonances in its H¹ nuclear magnetic resonance spectrum.

3. (a) This question is about the compounds and reactions shown in the diagram below.

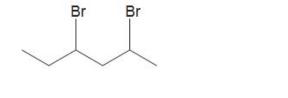
(i) The addition of hydrogen bromide to propene gives 2-bromopropane as the main product. Complete the outline mechansim below, inserting curly arrows and charges where appropriate. [2]

$$CH_3$$
— $CH=CH_2$ \longrightarrow CH_3 — CH — CH_3 \longrightarrow CH_3 — $CHBr$ — CH_3

$$H^{\delta +} - Br^{\delta -}$$
 :Br

(ii) The reaction of 2-bromopropane to give propan-2-ol is an example of a nucleophilic substitution reaction. Suggest a nucleophile that can be used for this reaction and give a reason why this is classed as a substitution reaction. [2]

Reason	Nucleophile	 	 	
	Reason	 	 	


(iii) The production of propene from propan-2-ol is an example of an elimination reaction. Another elimination reaction is the reaction of bromoethane with sodium hydroxide.

$$CH_3CH_2Br + NaOH \longrightarrow CH_2 = CH_2$$

Complete the equation by giving the formulae of the other products. [1]

(Total 5)

4. (a) State the molecular formula of compound L that has the skeletal formula shown.

(b) Compound L reacts with alcoholic sodium hydroxide solution to give hex-1,3-diene as one of the products.

State the type of reaction that has occurred. [1]

(Total 2)

[1]

- 5. 2-Bromobutane, C₄H₃Br, is a halogenoalkane that behaves in a similar way to 1-chlorobutane.
 - (a) (i) Complete the diagram below to show the mechanism for the reaction between 2-bromobutane and aqueous sodium hydroxide. You should include relevant charges, dipoles, lone pairs and curly arrows to show the movement of electron pairs.
 [4]

(ii) What type of mechanism is shown in (a)(i)?

[1]

(iii) The reaction involves heterolytic bond fission.	
What is meant by heterolytic bond fission?	
	[1
(b) Bromoethane can be converted into ethene.	
(i) Name the reagent and solvent needed to convert bromoethane into ethene.	
	[1
(ii) What type of reaction occurs in (b)(i)?	
	[1
(iii) 2-Bromobutane behaves in a similar way to bromoethane in this type of reaction. 2-bromobutane is reacted as described in <i>(b)</i> (i) two alkenes that are structural isom	
Draw the displayed formulae of these two alkenes	
	[2
	(Total 10